Indice del forum Templum Minervae
forum ufficiale del Tempio di Minerva
 
PortalPortale  blogBlog  AlbumAlbum  Gruppi utentiGruppi utenti  Lista degli utentiLista degli utenti  GBGuestbook  Pannello UtentePannello Utente  RegistratiRegistrati 
 FlashChatFlashChat  FAQFAQ  CercaCerca  Messaggi PrivatiMessaggi Privati  StatisticheStatistiche  LinksLinks  LoginLogin 
 CalendarioCalendario  DownloadsDownloads  Commenti karmaCommenti karma  TopListTopList  Topics recentiTopics recenti  Vota ForumVota Forum


Un contributo matematico alla quadratura del cerchio
Utenti che stanno guardando questo topic:0 Registrati,0 Nascosti e 0 Ospiti
Utenti registrati: Nessuno


 
Nuovo Topic   Rispondi    Indice del forum -> Pitagorismo
PrecedenteInvia Email a un amico.Utenti che hanno visualizzato questo argomentoSalva questo topic come file txtVersione stampabileMessaggi PrivatiSuccessivo
Autore Messaggio
Floria

Profano addentrato
Profano addentrato


Iscritti

Sesso: Sesso:Femmina

Registrato: 08/01/12 14:14
Messaggi: 78
Floria is offline 







italy
MessaggioInviato: 19 Mar 2012 02:04:20    Oggetto:  Un contributo matematico alla quadratura del cerchio
Descrizione:
Rispondi citando

[...] Come accennato nel precedente post sul numero π, la sua storia è legata al problema della quadratura del cerchio. Un problema che ha appassionato i matematici fino al 1882, quando il tedesco Ferdinand Lindeman ha dimostrato che era irresolubile.

“Quadrare un cerchio” significa costruire un quadrato di area image uguale a quella del cerchio, usando esclusivamente riga e compasso.

Trovare una soluzione richiederebbe la costruzione del numero π (l'area del cerchio è πr², e quindi un quadrato con area πr² deve avere lato pari a r*π).

Ma π sfugge alla costruzione con riga e compasso! Si dice che π è un numero trascendente.

(Voi conoscete altri numeri irrazionali, per es. 2,3,.... Ma mentre si può costruire con riga e compasso un segmento lungo 2 o un segmento lungo 3 - ricordate la chiocciola delle radici quadrate - , con π non si riesce!)

Le ricerche sul problema risalgono alla più remota antichità. Esso si trova nel Papyrus Rhind (1650 a. C.) attribuito allo scrittore egiziano Ahmes, lo scritto è conservato al British Museum a Londra.

Seguiamo un po’ di storia di π …

Quali valori i matematici hanno attribuito al numero π nel corso della storia?
I Caldei, vari millenni prima della nostra era: 3.

Gli Ebrei: 3 (Bibbia, Libro dei Re, L, VII, 23).

Nel Papiro Rhind viene data una prima approssimazione del valore; viene indicata come regola di quadratura, senza riportare alcuna dimostrazione, la seguente: "è equivalente a un cerchio quel quadrato che ha per lato gli 8/9 del diametro del cerchio".

Se assumiamo il diametro lungo 1, il lato del quadrato sarà lungo 89 e la sua area risulterà 6481.

Quindi possiamo scrivere:

πr^2=6481

ma

r=1\2,

quindi

1\4π=6481,

da cui

π=25681≅3,1605…

Il valore di π fu calcolato in modo sistematico da Archimede, il maggiore scienziato della Grecia, vissuto a Siracusa nel 287-212 a. C. (VEDI). Nel trattato Sulla misura del cerchio, partendo dall’esagono regolare inscritto e circoscritto al cerchio, Archimede calcolò i perimetri dei poligoni regolari raddoppiando successivamente i lati. Arrivò così ai poligoni inscritti e circoscritti di 96 lati che danno per π i valori:

3,1414 < π < 3,1417

In tempi molto più recenti, dal 1500 in poi, fu ripreso il problema della determinazione del valore di π, e furono calcolate centinaia di cifre decimali.

Nel 1873, Shanks indicò i primi 707 decimali di π (sbagliati dopo il 527°).

Nel 1956, Ludolph van Ceulen calcolò i primi 35 decimali di π, il che permetterebbe di ottenere il volume di una sfera della dimensione della terra con un’approssimazione di tre miliardesimi di centimetro cubo circa.

L’avvento dei computer ha permesso di spingere i calcoli più lontano. Nel 1958, François Genuys ottenne 1.000 decimali con un computer IBM 704.

Infine, nel 1974, Jean Guilloud calcolò 1.000.000 decimali grazie al computer più potente dell’epoca, un Control Data 7600, in 23 ore e 18 minuti. (J. Guilloud e M. Bouyer, *1.000.000 de decimales de π*, Commissariat à l’Energie atomique, Paris, 1974)
Jean Guilloud è oggi il solo uomo al mondo a sapere quale sia il 1.000.001° decimale di π ! [Jean Pierre Alem - Giochi d'ingegno e divertimenti matematici]
Torna in cima
Profilo Messaggio privato
Adv



MessaggioInviato: 19 Mar 2012 02:04:20    Oggetto: Adv





Torna in cima
Mostra prima i messaggi di:   
Nuovo Topic   Rispondi    Indice del forum -> Pitagorismo Tutti i fusi orari sono GMT + 1 ora
Pagina 1 di 1

 
Vai a:  
Non puoi inserire nuovi Topic in questo forum
Non puoi rispondere ai Topic in questo forum
Non puoi modificare i tuoi messaggi in questo forum
Non puoi cancellare i tuoi messaggi in questo forum
Non puoi votare nei sondaggi in questo forum
Non puoi allegare files in questo forum
Puoi scaricare files da questo forum





Templum Minervae topic RSS feed 
Powered by MasterTopForum.com with phpBB © 2003 - 2009
Theme ACID v1.5 par HEDONISM